對稱多項式
數學中的對稱多項式是一种特殊的多元多项式。假设一个n元多項式P(X1, X2, ..., Xn),當其中的n個不定元任意交換後,多項式仍維持不變,就称其为对称多项式。严格的说法是,如果对任意的n元置换σ,都有P(Xσ(1), Xσ(2), ..., Xσ(n)) = P(X1, X2, ..., Xn),就说P是对称多项式。
对称多项式最早是在出现在对一元多项式方程求根的研究中。一元多项式方程的系数可以用它的根的多项式来表达。而多项式的任何一个根的地位理当与余者都相同,所以这类多项式中,不定元进行置换不应当改变多项式。从这个角度来说,将多项式方程的根构成的系数多项式称为基本对称多项式是合理的。有定理说明,任意的对称多项式都可以表达为基本对称多项式的多项式。
目录
1 例子
2 基本對稱多項式
2.1 待定系数法
2.2 与高次方程的性质
2.3 与等幂和的性质
2.3.1 牛顿公式
2.3.2 组合公式
3 参见
4 参考资料
例子
- P(X1,X2)=X13+X23−7{displaystyle P(X_{1},X_{2})=X_{1}{}^{3}+X_{2}{}^{3}-7}
- P(X1,X2)=4X1X2{displaystyle P(X_{1},X_{2})=4X_{1}X_{2}}
- P(X1,X2,X3)=X1X2X3−2X1X2−2X1X3−2X2X3{displaystyle P(X_{1},X_{2},X_{3})=X_{1}X_{2}X_{3}-2X_{1}X_{2}-2X_{1}X_{3}-2X_{2}X_{3}}
以上的多項式都對稱。但是像P(X1,X2)=X1−2X2{displaystyle P(X_{1},X_{2})=X_{1}-2X_{2}}的多項式就不對稱,因為把X1{displaystyle X_{1}}
和X2{displaystyle X_{2}}
對換後,會得到X2−2X1{displaystyle X_{2}-2X_{1}}
,不等於原來的多項式。
基本對稱多項式
對n{displaystyle n}個不定元X1,X2,...,Xn{displaystyle X_{1},X_{2},...,X_{n}}
,有n{displaystyle n}
個n{displaystyle n}
元初等對稱多項式,就是(A+X1)(A+X2)...(A+Xn){displaystyle (A+X_{1})(A+X_{2})...(A+X_{n})}
除首項外的各項係數。例如當n=3{displaystyle n=3}
,基本對稱多項式為X1+X2+X3{displaystyle X_{1}+X_{2}+X_{3}}
,X1X2+X2X3+X3X1{displaystyle X_{1}X_{2}+X_{2}X_{3}+X_{3}X_{1}}
和X1X2X3{displaystyle X_{1}X_{2}X_{3}}
。
基本對稱多項式是對稱多項式的構成單元。所有n{displaystyle n}元對稱多項式,都可以用這n{displaystyle n}
個基本對稱多項式以加法和乘法表示出來。更準確地說:
- 任何n{displaystyle n}
元對稱多項式,都可以用這n{displaystyle n}
個以原來不定元組成的基本對稱多項式,唯一地以多項式來表示。
例如當n=2{displaystyle n=2},有2個基本對稱多項式X1+X2{displaystyle X_{1}+X_{2}}
和X1X2{displaystyle X_{1}X_{2}}
。第一個例子中的多項式可以寫成
P(X1,X2)=X13+X23−7=(X1+X2)3−3X1X2(X1+X2)−7{displaystyle P(X_{1},X_{2})=X_{1}{}^{3}+X_{2}{}^{3}-7=(X_{1}+X_{2})^{3}-3X_{1}X_{2}(X_{1}+X_{2})-7}。
待定系数法
f(x1,x2,x3)=x13+x23+x33{displaystyle f(x_{1},x_{2},x_{3})=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}}表达成基本对称多项式
设f(x1,x2,x3)=a(x1+x2+x3)3+b(x1+x2+x3)(x1x2+x1x3+x2x3)+c(x1x2x3){displaystyle f(x_{1},x_{2},x_{3})=a(x_{1}+x_{2}+x_{3})^{3}+b(x_{1}+x_{2}+x_{3})(x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3})+c(x_{1}x_{2}x_{3})}
f(1,0,0)=a=1{displaystyle f(1,0,0)=a=1}
f(1,1,0)=8a+2b=2,b=−3{displaystyle f(1,1,0)=8a+2b=2,b=-3}
f(1,1,1)=27a+9b+c=3,c=3{displaystyle f(1,1,1)=27a+9b+c=3,c=3}[1]
与高次方程的性质
F(x)=(x−x1)(x−x2)...(x−xn)=∑m=0namxm{displaystyle F(x)=(x-x_{1})(x-x_{2})...(x-x_{n})=sum _{m=0}^{n}a_{m}x^{m}}
F′(x)=(x−x2)...(x−xn)+(x−x1)(x−x3)...(x−xn)+...+(x−x1)(x−x2)...(x−xn−1){displaystyle F'(x)=(x-x_{2})...(x-x_{n})+(x-x_{1})(x-x_{3})...(x-x_{n})+...+(x-x_{1})(x-x_{2})...(x-x_{n-1})}
F″(x)=(x−x3)(x−x4)...(x−xn)+(x−x2)(x−x4)...(x−xn)+...+(x−x1)(x−x2)...(x−xn−2){displaystyle F''(x)=(x-x_{3})(x-x_{4})...(x-x_{n})+(x-x_{2})(x-x_{4})...(x-x_{n})+...+(x-x_{1})(x-x_{2})...(x-x_{n-2})}
F′(x)F(x)=1x−x1+1x−x2+...+1x−xn{displaystyle {frac {F'(x)}{F(x)}}={frac {1}{x-x_{1}}}+{frac {1}{x-x_{2}}}+...+{frac {1}{x-x_{n}}}}
与等幂和的性质
以下用a表示对称多项式,s表示等幂和:
∏r=1n(x−xr)=∑r=0narxr=0,sm=∑r=1nxrm{displaystyle prod _{r=1}^{n}(x-x_{r})=sum _{r=0}^{n}a_{r}x^{r}=0,s_{m}=sum _{r=1}^{n}x_{r}^{m}}
牛顿公式
sm+a1sm−1+a2sm−2+...+am−1s1+mam=0{displaystyle s_{m}+a_{1}s_{m-1}+a_{2}s_{m-2}+...+a_{m-1}s_{1}+ma_{m}=0}[2]
证明如下:
(∑i=1nkixir)∑i1≠i2≠...≠is−rxi1xi2...xis−r=∑i1≠i2≠...≠is−rki1xi1r+1xi2...xis−r+∑i1≠i2≠...≠is−rki1xi1rxi2...xis−r+1{displaystyle displaystyle (sum _{i=1}^{n}k_{i}x_{i}^{r})sum _{i_{1}neq i_{2}neq ...neq i_{s-r}}x_{i_{1}}x_{i_{2}}...x_{i_{s-r}}=sum _{i_{1}neq i_{2}neq ...neq i_{s-r}}k_{i_{1}}x_{i_{1}}^{r+1}x_{i_{2}}...x_{i_{s-r}}+sum _{i_{1}neq i_{2}neq ...neq i_{s-r}}k_{i_{1}}x_{i_{1}}^{r}x_{i_{2}}...x_{i_{s-r+1}}}
∑i1≠i2≠...≠is−1ki1xi12xi2...xis−1+∑i1≠i2≠...≠iski1xi11xi2...xis−∑i1≠i2≠...≠is−2ki1xi13xi2...xis−2−∑i1≠i2≠...≠is−1ki1xi12xi2...xis−1+...{displaystyle displaystyle sum _{i_{1}neq i_{2}neq ...neq i_{s-1}}k_{i_{1}}x_{i_{1}}^{2}x_{i_{2}}...x_{i_{s-1}}+sum _{i_{1}neq i_{2}neq ...neq i_{s}}k_{i_{1}}x_{i_{1}}^{1}x_{i_{2}}...x_{i_{s}}-sum _{i_{1}neq i_{2}neq ...neq i_{s-2}}k_{i_{1}}x_{i_{1}}^{3}x_{i_{2}}...x_{i_{s-2}}-sum _{i_{1}neq i_{2}neq ...neq i_{s-1}}k_{i_{1}}x_{i_{1}}^{2}x_{i_{2}}...x_{i_{s-1}}+...}
(−1)s−1∑i1ki1xi1s+∑i1≠i2≠...≠iski1xi11xi2...xis=∑r=1s−1(−1)r(∑i=1nkixir)∑i1≠i2≠...≠is−rxi1xi2...xis−r{displaystyle displaystyle (-1)^{s-1}sum _{i_{1}}k_{i_{1}}x_{i_{1}}^{s}+sum _{i_{1}neq i_{2}neq ...neq i_{s}}k_{i_{1}}x_{i_{1}}^{1}x_{i_{2}}...x_{i_{s}}=sum _{r=1}^{s-1}(-1)^{r}(sum _{i=1}^{n}k_{i}x_{i}^{r})sum _{i_{1}neq i_{2}neq ...neq i_{s-r}}x_{i_{1}}x_{i_{2}}...x_{i_{s-r}}}
组合公式
两项时使等幂和分解为积与和的组合,如x12+x22=(x1+x2)2−2x1x2{displaystyle x_{1}^{2}+x_{2}^{2}=(x_{1}+x_{2})^{2}-2x_{1}x_{2}}:
- x1m+x2m=∑r=0⌊m2⌋mCm−rrm−r(x1+x2)m−2r(−x1x2)r{displaystyle x_{1}^{m}+x_{2}^{m}=sum _{r=0}^{lfloor {frac {m}{2}}rfloor }{frac {mC_{m-r}^{r}}{m-r}}(x_{1}+x_{2})^{m-2r}(-x_{1}x_{2})^{r}}
用数学归纳法可证明高维的形式:
- sm=∑ri=0⌊mi⌋m(r1+r2+...+rn−1)!r1!r2!...rn!∏i=1n(−an−i)ri{displaystyle s_{m}=sum _{r_{i}=0}^{lfloor {frac {m}{i}}rfloor }{frac {m(r_{1}+r_{2}+...+r_{n}-1)!}{r_{1}!r_{2}!...r_{n}!}}prod _{i=1}^{n}(-a_{n-i})^{r_{i}}}
- f(m,r1,...,rn)=f(m−1,r1−1,...,rn)+...+f(m−n,r1,...,rn−1){displaystyle f(m,r_{1},...,r_{n})=f(m-1,r_{1}-1,...,r_{n})+...+f(m-n,r_{1},...,r_{n}-1)}
- f(m,r1,...,rn)=f(m−1,r1−1,...,rn)+...+f(m−n,r1,...,rn−1){displaystyle f(m,r_{1},...,r_{n})=f(m-1,r_{1}-1,...,r_{n})+...+f(m-n,r_{1},...,r_{n}-1)}
- (m−1)(r1+...+rn−2)!(r1−1)!...rn!+...+(m−n)(r1+...+rn−2)!r1!...(rn−1)!=[r1(m−1)+...+rn(m−n)](r1+...+rn−2)!r1!...rn!{displaystyle {frac {(m-1)(r_{1}+...+r_{n}-2)!}{(r_{1}-1)!...r_{n}!}}+...+{frac {(m-n)(r_{1}+...+r_{n}-2)!}{r_{1}!...(r_{n}-1)!}}={frac {[r_{1}(m-1)+...+r_{n}(m-n)](r_{1}+...+r_{n}-2)!}{r_{1}!...r_{n}!}}}
- (m−1)(r1+...+rn−2)!(r1−1)!...rn!+...+(m−n)(r1+...+rn−2)!r1!...(rn−1)!=[r1(m−1)+...+rn(m−n)](r1+...+rn−2)!r1!...rn!{displaystyle {frac {(m-1)(r_{1}+...+r_{n}-2)!}{(r_{1}-1)!...r_{n}!}}+...+{frac {(m-n)(r_{1}+...+r_{n}-2)!}{r_{1}!...(r_{n}-1)!}}={frac {[r_{1}(m-1)+...+r_{n}(m-n)](r_{1}+...+r_{n}-2)!}{r_{1}!...r_{n}!}}}
- =[m(r1+...+rn)−m](r1+...+rn−2)!r1!...rn!=m(r1+...+rn−1)!r1!...rn!{displaystyle ={frac {[m(r_{1}+...+r_{n})-m](r_{1}+...+r_{n}-2)!}{r_{1}!...r_{n}!}}={frac {m(r_{1}+...+r_{n}-1)!}{r_{1}!...r_{n}!}}}
- =[m(r1+...+rn)−m](r1+...+rn−2)!r1!...rn!=m(r1+...+rn−1)!r1!...rn!{displaystyle ={frac {[m(r_{1}+...+r_{n})-m](r_{1}+...+r_{n}-2)!}{r_{1}!...r_{n}!}}={frac {m(r_{1}+...+r_{n}-1)!}{r_{1}!...r_{n}!}}}
取m=n=3{displaystyle m=n=3}
- x13+x23+x33=3(3−1)!3!(x1+x2+x3)3+3(1+1−1)!1!1!(x1+x2+x3)(−x1x2−x1x3−x2x3)+3(1−1)!1!(x1x2x3){displaystyle displaystyle x_{1}^{3}+x_{2}^{3}+x_{3}^{3}={frac {3(3-1)!}{3!}}(x_{1}+x_{2}+x_{3})^{3}+{frac {3(1+1-1)!}{1!1!}}(x_{1}+x_{2}+x_{3})(-x_{1}x_{2}-x_{1}x_{3}-x_{2}x_{3})+{frac {3(1-1)!}{1!}}(x_{1}x_{2}x_{3})}
- x13+x23+x33=(x1+x2+x3)3−3(x1+x2+x3)(x1x2+x1x3+x2x3)+3(x1x2x3){displaystyle x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=(x_{1}+x_{2}+x_{3})^{3}-3(x_{1}+x_{2}+x_{3})(x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3})+3(x_{1}x_{2}x_{3})}
也可以把对称多项式表达成等幂和:
- an−m=∑ri=0⌊mi⌋∏i=1m(−si)riiriri!{displaystyle a_{n-m}=sum _{r_{i}=0}^{lfloor {frac {m}{i}}rfloor }prod _{i=1}^{m}{frac {(-s_{i})^{r_{i}}}{i^{r_{i}}r_{i}!}}}
- mf(r1,...,rm)=f(r1−1,...,rm)+...+f(r1,...,rm−1){displaystyle mf(r_{1},...,r_{m})=f(r_{1}-1,...,r_{m})+...+f(r_{1},...,r_{m}-1)}
- mf(r1,...,rm)=f(r1−1,...,rm)+...+f(r1,...,rm−1){displaystyle mf(r_{1},...,r_{m})=f(r_{1}-1,...,r_{m})+...+f(r_{1},...,r_{m}-1)}
- r1∏i=1m1iriri!+...+mrm∏i=1m1iriri!=m∏i=1m1iriri!{displaystyle r_{1}prod _{i=1}^{m}{frac {1}{i^{r_{i}}r_{i}!}}+...+mr_{m}prod _{i=1}^{m}{frac {1}{i^{r_{i}}r_{i}!}}=mprod _{i=1}^{m}{frac {1}{i^{r_{i}}r_{i}!}}}
- r1∏i=1m1iriri!+...+mrm∏i=1m1iriri!=m∏i=1m1iriri!{displaystyle r_{1}prod _{i=1}^{m}{frac {1}{i^{r_{i}}r_{i}!}}+...+mr_{m}prod _{i=1}^{m}{frac {1}{i^{r_{i}}r_{i}!}}=mprod _{i=1}^{m}{frac {1}{i^{r_{i}}r_{i}!}}}
取m=n=3{displaystyle m=n=3}
- −x1x2x3=1133!(−x1−x2−x3)3+1111!211!(−x1−x2−x3)(−x12−x22−x32)+1311!(−x13−x23−x33){displaystyle displaystyle -x_{1}x_{2}x_{3}={frac {1}{1^{3}3!}}(-x_{1}-x_{2}-x_{3})^{3}+{frac {1}{1^{1}1!2^{1}1!}}(-x_{1}-x_{2}-x_{3})(-x_{1}^{2}-x_{2}^{2}-x_{3}^{2})+{frac {1}{3^{1}1!}}(-x_{1}^{3}-x_{2}^{3}-x_{3}^{3})}
- x1x2x3=16(x1+x2+x3)3−12(x1+x2+x3)(x12+x22+x32)+13(x13+x23+x33){displaystyle displaystyle x_{1}x_{2}x_{3}={frac {1}{6}}(x_{1}+x_{2}+x_{3})^{3}-{frac {1}{2}}(x_{1}+x_{2}+x_{3})(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})+{frac {1}{3}}(x_{1}^{3}+x_{2}^{3}+x_{3}^{3})}
参见
- 等幂求和
- 麦克劳林不等式
参考资料
^ 郭龙先 张毅敏 何建琼. 高等代数.
^ 沈南山. 牛顿(Newton)公式的一个注记及其应用. 数学通报. 2005, (3).
|
|